Adaptive and Non-adaptive ISI Sparse Channel Estimation Based on SL0 and Its Application in ML Sequence-by-Sequence Equalization
نویسندگان
چکیده
In this paper, we firstly propose an adaptive method based on the idea of Least Mean Square (LMS) algorithm and the concept of smoothed l0 (SL0) normpresented in [1] for estimation of sparse Inter Symbol Interface (ISI) channels which will appear in wireless and acoustic underwater transmissions. Afterwards, a new non-adaptive fast channel estimation method based on SL0 sparse signal representation is proposed. ISI channel estimation will have a direct effect on the performance of the ISI equalizer at the receiver. So, in this paper we investigate this effect in the case of optimal Maximum Likelihood Sequence-by-sequence Equalizer (MLSE) [2]. In order to implement this equalizer, we propose a new method called pre-filteredParallel Viterbi Algorithm (or pre-filteredPVA) for general ISI sparse channels which has much less complexity than ordinary Viterbi Algorithm (VA) and also with no considerable loss of optimality, which we have examined by doing some experiments. Indeed, Simulation results clearly showthat theproposed concatenated estimationequalization methods havemuch better performance than the usual equalization methods such as Linear Mean Square Equalization (LMSE) for ISI sparse channels, while preserving simplicity at the receiver with the use of PVA.
منابع مشابه
ISI sparse channel estimation based on SL0 and its application in ML sequence-by-sequence equalization
In this paper, which is an extended version of our work at LVA/ICA 2010 [1], the problem of Inter Symbol Interface (ISI) Sparse channel estimation and equalization will be investigated. We firstly propose an adaptive method based on the idea of Least Mean Square (LMS) algorithm and the concept of smoothed l0 (SL0) norm presented in [2] for estimation of sparse ISI channels. Afterwards, a new no...
متن کاملChannel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain
Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is con...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملChannel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain
Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...
متن کاملEqualization of Sparse Intersymbol-Interference Channels Revisited
Sparse intersymbol-interference (ISI) channels are encountered in a variety of communication systems, especially in high-datarate systems. These channels have a large memory length, but only a small number of significant channel coefficients. In this paper, equalization of sparse ISI channels is revisited with focus on trellis-based techniques. Due to the large channel memory length, the comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010